STABILITY OF THE BOUNDARY LAYER
ABOVE THE SURFACE OF A WAVE
TRAVELLING OVER A PLATE
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The two~dimensional problem of the stability of the flow of an incompressible fluid over a
rigid surface perturbed by a wave travelling in the propagation direction of the flow is dis-
cussed in the linear approximation, The problem is solved in the coordinate system at rest
with respect to the travelling wave. The parameters of this wave are not eigenvalues of the
corresponding linear problem of the stability. The solution is sought in the form of a ser-
ies in powers of the wave amplitude with an accuracy out to the quadratic term inclusively.
Calculations are made of the dependence of the neutral stability curve on the amplitude,
wavelength, and phase velocity,

1. Dimensionless quantities are used, and u, (the velocity of the advancing flow) and 6* = 1,73V vuy/X,
where X is the distance from tke origin of the plate and v is the kinematic viscosity, served as the scales,
The discussion is conducted in the coordinate system at rest with respect to the travelling wave; therefore
the coordinate of the wall has the form

¥ = ¢ cos Bz, (1.1

where y, x are the normal and longitudinal coordinates, respectively, € is the amplitude, and 8 is the wave
number, Let us introduce the following coordinates: 5 is the stream function and ¢ is the potential of the
corresponding nonviscous problem, i.e.,

=0;n =0,y = gcos fr; y > oo, dy/dy > 1.

The Lamé coefficients [1] are
' Ry = hi® = h =1 -+ 26B cos B ™" -+ O (eh)’.

(1.2)
The linearized equation for the stream function of the perturbation ¢ has the form
BAY |, 9(¥, hAY) A (hAY, %) _ A(hAY)
9 ' am§) 8(n,§  Re (1.3)

in the new coordinates, where t is the time and Re is the Reynolds number.

The coefficients in Eq. (1.3) are periodic functions of £ and do not depend on t. Therefore we will
seek the solution of (1.3) in the form

== t
P = ePle(n, &). (L.4)
According to [1], the stream function of a steady flow is of the form

V= {(w—c)dn+e(¥y + ¥ors) + &2 (Fop + ¥ao - Tog) + 0 (%), (1.5)

where the first subscript denotes the harmonic number, u is the Blasius velocity distribution, and ¢ is the
phase velocity of the wave travelling over the wall, Substituting Eq. (1.4) into Eq. (1.3), we write the problem
obtained in the form
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Lo = ele~EH_q - eBH ¢) — 2 Mg + O?). {1.6)

The form of L, H_, and H_ is determined by Egs. (1.2), (1.3), and (1.5). Since the eignevalues of the oper-
ator L are simple [2] the solution of Eq. (1.6) will be sought in the form [2],

RN

= y -n — §Gi7lﬁ Y — {‘ k
1y T)-Ipns B iy ~ L) Pn h:fnlquhe . .7
Grouping terms of identical harmonics and powers of € in (1.6), we obtain the system of equations
, & .
T (o, py) Tgo =0, T (o, py) @o1 = Py Be ( ;}f" “') Poos
T (2 5 B, po) on1 = ¢ Hze™ gy, (1.8)

9> L~ H e+
T(ay pO) Po2 = P2 Re (‘;;l-é' —_ a2) Qoo e 1(a+ﬁ)'H.,e lee ﬂ)E‘Pn
+ e_i(a_ﬁ)gH-kei(a"B)E‘P-u T+ M Qoo
where T(a, p) is the Orr—Sommerfeld operator. From the condition of solvability of the system (1.8) we

obtain a correction to the eigenvalue with an accuracy up to g?

0
4

pr=11 py= =g | (eTETPRHLGI O R R @1 PR - M) xdn/ o= qu)xdn (1.9
o
0

(x is the eigenfunction of the operator conjugate to the Orr—Sommerfeld operator).

2, We will introduce expressions for the operators entering into Eqgs. (1.7),

DO, ) S(AY,) s 0,
H = Re(py3 = gt — it 4 ifve A
g o )
o pzemin © n(.‘l;_f’_))_-y 2 —ﬁﬂ(ﬁ_“-_‘l)
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M, Re( e — dg), M= 3M,,

H_ = H++Re([)o"";o)A'
where
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Here F is the solution of the problem {1}

- 7 Vi
B Re (i — ) (F" — PF) — u'F) = A®F 4+ 220 (1Y _ 98,

€

FO) =%, FO=—3@0)—f), n=oc, F=F=0.

The principal term in ¥, is determined from the equation
ANy = —28 Im (F/(F" — BF)) — F(F“* — BF")),
for n =0, ¥g = ¥ =0, and for n ==, ¥, = ¥ = 0.

3. One can determine the region of applicability of the computational procedure being used by analyz-
ing the behavior of the series (1.5). Since the calculations are performed for values of 8 and ¢ close to the
eigenvalue of the Orr—Sommerfeld operator, one should judge the behavior of the series from the ratio of
\1’13 to ‘I’II:
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It was assumed in the calculations that @}y ~ X' ~ 1. The scale of these functions is ys = 2.5(3 Re u' )‘1/ 3 8l
It follows from the estimates given that the procedure being used is suitable in the region in which the in-
equality

500B(ew’)%/ Ac® Re < 1 (3.1)

is satisfied, Here Ac is the distance from c to the eigenvalue of the Orr—Sommerfeld operator, and 8 and

€ are parameters of the wave (1.1). The orthogonalization method [4] was used in the numerical integration
of the Orr—Sommerfeld equation. The dependence of the correction to the rise coefficient p, on the phase
velocity of wave propagation on the wall is represented by the solid curve in Fig. 1 for a specified Tolmin—
Schlichting wave, and the dependence of l‘I’h|§nax on c is depicted by the dashed curve, These results corre-
spond to the lower branch of the curve of neutral stability for the values Re = 1450, 8 = 0.141, and o = 0.142,
As is evident from Fig,. 1, the effect of wall corrugation on the stability is mainly related to a variation of the
contribution to the basic steady flow. Some increase in the effect is caused by a shift of the maximum of

|¥};| into the region of the critical layer. For ¢ =0 the correction to the rise coefficient of the perturbation
‘is reduced to a minimum, and p, ~ 1/Re,

Similar results were obtained for the second branch of the curve of neutral stability. In this ¢ase the
wall corrugation leads to destabilization of the flow. The correction to the rise coefficient in the calculations
due to ¥, did not amount to more than 10% of the correction due to ¥,; in the region of the neutral curve.

A change in sign of the correction occurs in the region of the maximum rise coefficients of the perturbations.

The dependence of the curve of neutral stability on € is given in Fig. 2 for the specified ¢ and 8.
The neutral curve for a smooth wall is denoted by the number ‘1, Perturbation of the surface by a mono-
chromatic wave leads to a distortion of the curve of neutral stability in the narrow zone where ip, =~ ¢8 and
B =~ a, The distortions of the neutral curve for the following parameters of a wave travelling over the wall
are denoted by the numbers 2 and 3: e =0.296, 8 = 10~ Re, and Ac =3.10~% for € =10™% and € =2.107%,
respectively, and by the number 4 for ¢ =0.31, 8 =0.9-10"* Re, Ac = 10~%, and € = 0.7-107°%, Specifica-
tion of 8 according to this law indicates that the diménsional length of the wave travelling over the wall is
preserved with a change in the number Re. The correction to the rise coefficient is appreciable only in a
narrow range of Re numbers adjacent to the region of distortion of the neutral stability curve.

The results of this paper show that the effect of corrugation in the range of Reynolds numbers consid-
ered (520 = Re = 3500) reduces upon satisfaction of the condition (3.1) to a distortion of the steady velocity
distribution, which leads to a change in the stability of the flow, Stabilization of the flow on the lower branch
of the neutral curve for @ ~ 8 and Ac <« 1 and destabilization on the upper branch seem natural if one re-
calls the results of the nonlinear theory {5, 61, The authors are grateful to S. A, Gaponov, who pointed out
‘this analogy.
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